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Global near infrared spectroscopy models to
predict wood chemical properties of Eucalyptus

Gary R Hodge1, Juan Jose Acosta1, Faride Unda2, William C Woodbridge1

and Shawn D Mansfield2

Abstract
Global near infrared spectroscopy models (multiple-species, multiple-sites) were developed to predict chemical properties

of Eucalyptus wood. The sample data set included 186 samples from four data sets (five species) originating from six

countries: Eucalyptus urophylla from Argentina, Colombia, Venezuela, and South Africa; Eucalyptus dunnii from Uruguay;

Eucalyptus globulus and Eucalyptus nitens from Chile; and Eucalyptus grandis from Colombia. The 186 samples were all

preselected from larger collections of 400 to nearly 1800 samples to represent the range of chemical and spectral variation in

each data set. The chemical traits modeled were total lignin, insoluble lignin, soluble lignin, syringyl–guaiacyl ratio (S/G),

glucose, xylose, galactose, arabinose, and mannose. Single-species models and global multiple-species models were

developed for each chemical constituent. For the global model, the R2
cv for total lignin, insoluble lignin and syringyl–

guaiacyl ratio were 0.95, 0.96, and 0.86, respectively. An alternate expression of the syringyl–guaiacyl relationship (S/(SþG))

resulted in better near infrared calibrations (e.g., for the global model, R2
cv¼ 0.95). The global models for sugar content

were also very good, but were slightly inferior to those for the lignin related traits, with R2
cv¼ 0.74 for glucose, 0.89 for

xylose, and from 0.72 to 0.91 for the minor sugars. To investigate the utility of the global models to predict chemical traits for

species not included in the calibration, three-species calibrations were used to predict each trait in a fourth species data set.

The prediction fit statistics ranged from excellent to poor depending on the species and trait, but in general the predictions

would be at least moderately useful for most species-trait combinations. For some species-trait combinations with poor

initial predictions from the global model, the inclusion of 10 samples from the ‘‘new’’ species into the calibration global

model improved the fit statistics substantially. The global calibrations will be useful in tree breeding programs to rank

species, families, and clones for important wood chemical traits.
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Introduction

Near infrared (NIR) spectroscopy can be used to pro-
vide rapid indirect assessments of chemical properties
of various materials, including plant-derived mater-
ials such as grains and wood. As such, NIR is increas-
ingly being utilized in the forest and forest products
industry,1 and in particular, in forest tree genetic
improvement programs.2–5 The primary use of NIR in
tree breeding programs is to assess wood chemical
properties, including pulp yield and wood lignin and
cellulose content.6–10 In addition, several studies
report the utility of NIR to measure solid wood proper-
ties such as density, microfibril angle, modulus of elas-
ticity, and nonrecoverable collapse.11–19 Compared to
traditional laboratory methods for measuring wood
properties, NIR measurements offer the advantages
of rapid speed, relatively low cost, easy and precise
assessment of NIR spectra, nondestructive sampling,

and perhaps most importantly, the ability to assess
numerous traits with one analysis.18 Most wood prop-
erty traits are under a relatively high degree of genetic
control, and genetic gains in wood property traits can
have a significant impact on profitability.20–22 However,
breeders are generally interested in screening many
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hundreds or thousands of selections candidates, so
rapid, precise, and low cost assessments of wood
traits is very important.

Camcore is an international university-industry
research partnership working in the area of gene conserva-
tion and tree improvement (https://camcore.cnr.ncsu.edu).
The program began in 1980, and currently includes 28
active and 4 associate members in 20 countries. Many of
these organizations plant multiple species of pines and/or
eucalypts, including tropical, subtropical and temperate
species. Camcore has previously developed global NIR
models (i.e., robust, multi-site, multi-species calibration
models) for pines to predict lignin and cellulose con-
tent.23,24 Comparable global NIR models to predict
Eucalyptus wood lignin and cellulose contents, but also
the quantity of xylan and lignin monomer ratio (often
referred to as S:G ratio) would be of significant value, par-
ticularly for vertically integrated pulp and paper compa-
nies. The current study utilizes a data set of 186 wood
samples (preselected from a larger set of 3901 samples)
representing five commercially important eucalypt species
originating from six countries to develop NIR models for
important wood chemical traits. Camcore members would
use these models to study the genetic control of wood
chemical traits, and to screen breeding populations of the
five species; in addition, the models would likely be used to
screen populations of other species (and/or hybrids) not
included in this study. The specific objectives of this study
were:

1. To develop global NIR spectroscopy models to pre-
dict chemical composition of wood samples from dif-
ferent tropical, subtropical, and temperate eucalypt
species grown in different locations around the world,

2. To examine how well a multi-species calibration
could be extended to or extrapolated to an independ-
ent data set with samples from a different species, and

3. To examine how incorporation of a small number of
samples from a new species into a multi-species

calibration would improve the predictions for the
new species.

Materials and methods

Four sets of samples were included in this study: 50
samples of Eucalyptus urophylla from various countries,
50 samples of Eucalyptus dunnii from Uruguay, 50 sam-
ples of Eucalyptus globulus and Eucalyptus nitens from
Chile (41 and 9 samples, respectively), and 36 samples
of Eucalyptus grandis from Colombia. In each case, the
50 samples were pre-selected from a larger set of sam-
ples ranging from 400 to 1795 (Table 1, and further
described below).

All samples that were scanned with NIR were pre-
pared and handled in the same way. Briefly, solid wood
samples were chopped into smaller pieces using
machetes, knives, or guillotines, and then ground into
woodmeal using a Wiley mill to pass through a screen
with 1.6mm holes. The samples were dried at 50�C for
24 h, and then allowed to come to room temperature.
For each sample, 4 g of wood meal was then scanned in
a Foss NIRsystems 6500 NIR spectrometer using a
spinning sample module. Reflectance readings were
taken for NIR wavelengths from 1100 to 2500 nm, at
2 nm intervals, with a total of 32 scans averaged to
produce a single reflectance spectrum for each sample.

Cell wall chemical composition of all 186 samples
was assessed using the same 4 -g woodmeal samples
that were scanned with NIR. Initially, the woodmeal
was Soxhlet extracted overnight in hot acetone to
remove extractives, and the extractive-free material
was used for all further analyses. Lignin and carbohy-
drate content was determined with a modified Klason
method,25 in which extracted ground stem tissue (0.2 g)
was treated with 3mL of 72% H2SO4 and stirred every
10min for 2 h. Samples were then diluted with 112mL
deionized water and autoclaved for 1 h at 121�C. The

Table 1. Samples used for the development of global NIR calibration models for wood chemistry traits of Eucalyptus.

Species Country Wood samples

Number of samples

Age

(years) Prescreened

Wetlab

analysis

Eucalyptus urophylla Argentina, Colombia,

Venezuela, S. Africa

4–13 Breast height 12 mm

increment cores,

pith-to-bark

1795 50

Eucalyptus dunnii Uruguay 4 Breast height 12 mm

increment cores,

pith-to-bark

400 50

Eucalyptus globulus,

Eucalyptus nitensa
Chile 8–25 Breast height wood

shavings

480 50

Eucalyptus grandis Colombia 6 Breast height wedges 1226 36

5 species 6 countries 3901 186

NIR: near infrared.
aThe initial prescreen data set included 408 samples of E. globulus and 72 samples of E. nitens. The final wetlab data set included 41 samples of E. globulus

and 9 samples of E. nitens.
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acid-insoluble lignin fraction was determined gravime-
trically by filtration through a preweighed medium
coarseness sintered-glass crucible, while the acid-
soluble lignin component was determined spectro-
photometrically by absorbance at 205 nm.
Carbohydrate content was determined by anion
exchange high-performance liquid chromatography
(Dx-600; Dionex, Sunnyvale, CA) equipped with an
ion exchange PA1 (Dionex) column, a pulsed ampero-
metric detector with a gold electrode, and a
SpectraAS3500 auto injector (Spectra-Physics).

The lignin monomer composition (S:G ratio) was
determined as per Robinson and Mansfield,26 and
were analyzed by gas chromatography on a Hewlett
Packard 5890 series II instrument, equipped with an
autosampler, splitless injector, flame ionizing detector,
and a 30m, 5% diphenyl/95% dimethyl polysiloxane
coated RTX-5MS 0.25mm ID capillary column.

In summary, the traits measured were: glucose,
xylose, mannose, arabinose, and galactose content; sol-
uble lignin, insoluble lignin, and total lignin content, and
the ratio of syringyl lignin to guaiacyl lignin (S/G ratio).
As an alternate expression of lignin composition, the
S/G ratios were converted into percentage of syringyl
lignin¼ S/(SþG)� 100%, where S¼ syringyl lignin
content and G¼ guaiacyl lignin content. For conveni-
ence, throughout the rest of this manuscript this variable
will be denoted simply as S/(SþG). Thismeans that all of
the chemical traits are expressed in percentage units,
except for S/G ratio, which is unitless. Final NIR
models were developed using these 10 wetlab values.

Preselection of wood samples for wetlab analysis

For each of the four species sample sets, preselection of
the 50-sample (or 36-sample) subset for wetlab chemis-
try was done using the same approach. All samples in
each large set were scanned with NIR, and a prior NIR
model was used to make predictions of chemical traits.
A principal component analysis (PCA) was also done
on the spectral data set for the species. The 50 samples
for wetlab chemistry were then selected to ensure good
representation of the range variation for predicted
chemical variation, and for variation of the first two
principal components of the spectral data set. In all
cases, the same wood sample used for NIR scanning
was used for wetlab analysis.

Eucalyptus urophylla: Wood sampling and preselection. The
total number of E. urophylla samples available for selec-
tion was 1795 taken across 16 provenance-progeny test
sites in Argentina, Colombia, South Africa, and
Venezuela. Trees ranged in age from 4 to 13 years. All
specimens were collected as 12-mm diameter pith-to-
bark increment cores taken at breast height (1.3m).
The prescreening was done with three independent
NIR models for pulp yield developed for E. urophylla,
E. nitens, and E. grandis. Each model was a proprietary
(unpublished) model developed for one of Camcore’s

industry partners, with pulp yield assessed according to
company protocols, which differed among all three com-
panies. In general, the pulp yield models were moder-
ately precise, with R2 of calibration ranging from¼ 0.63
to 0.70, and standard errors of cross-validation (SECV)
ranging from �0.84% to �2.20%. Interestingly, the
pulp yield predictions for the 1795 E. urophylla samples
from the three different models (E. urophylla, E. nitens,
and E. grandis) were rather highly correlated (R¼ 0.83
to 0.86). The final 50 samples selected for wetlab assess-
ment came from 50 families from 47 provenances (8, 13,
14, and 16 samples from Argentina, South Africa,
Colombia, and Venezuela, respectively).

Eucalyptus dunnii: Wood sampling and preselection. The
total number of E. dunnii samples was 400 trees in a
series of four provenance—progeny test sites in
Uruguay. The trees were 4 years old, and all samples
were 12-mm diameter pith-to-bark increment cores
taken at breast height (1.3m). The prescreening was
done with the NIR models developed on the E. uro-
phylla samples discussed above, for the traits of glu-
cose, xylose, insoluble lignin content, and S/(SþG).
The 50 samples selected for wetlab analysis came
from 34 different families and 12 different provenances.

Eucalyptus globulus and Eucalyptus nitens: Wood sampling

and preselection. The total number of E. globulus
and E. nitens samples was 480 trees sampled in
Chiles (specifically, 408 E. globulus originating from
nine plantations, and 72 E. nitens from three planta-
tions). The trees ranged in age from 8 to 25 years old,
and all samples were taken at breast height (1.3m) on
the stem with an auger drill. Bark was removed from
both sides of the tree, and wood shavings were sampled
through the entire stem. The prior NIR models used for
prescreening were two-species NIR models developed
for E. urophylla and E. dunnii for glucose, xylose, insol-
uble lignin content, and S/(SþG). The final 50 samples
selected for wetlab analysis included 41 E. globulus and
9 E. nitens. For purposes of convenience, this data set
was treated as a single species throughout the rest of the
analysis.

Eucalyptus grandis: Wood sampling and preselection. The
total number of E. grandis samples was 1226 trees
sampled from three clonal genetic trials in Colombia.
The trees were 9 years old and were sampled by taking
discs at breast height (1.3m), which were then sectioned
into wedges, so that an approximate 22� arc of the disc
was used as the wood sample. DBH measurements at
ages 6 and 9 were used to guide removal of the outer
wood representing the last 3 years of growth, so the
final wood samples are best described as being 6 years
old. The prescreening was done with three-species NIR
models developed for E. urophylla, E. dunnii, and
E. globulus and E. nitens. The final 36 samples selected
for wetlab analysis represented 30 different clones, and
were taken from three different sites.
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R-NIR pipeline

For all preliminary modeling, a single transformation
was selected and used for all models (specifically,
Multiplicative Scatter Correctionþ Savitzy-Golay
second derivative with window size of seven points
and a second-order polynomial). This transformation
has generally given good results with a variety of
traits in both pines and eucalypts. For the development
of the final models discussed in this manuscript, a sys-
tematic approach was used to examine a number of
different mathematical transformations to ultimately
identify an optimum model for each data set and
wood chemical trait. In general, for a given data set,
a large number of data transformations produced
models with similar cross-validation fit statistics (R2

cv

and SECV). Typically, the transformation with the
highest R2

cv was selected as the best model, although
occasionally a transformation with very similar fit, but
fewer factors, was identified as optimum.

All model development was done using R software
(environment version 3.3.2),27 and a pipeline was writ-
ten to conduct three separate phases of model develop-
ment and prediction: transformation and outlier
detection, model calibration and cross-validation, and
prediction of new observations. The R-NIR pipeline
will be described here.

R-NIR pipeline: Transformation and outlier detection. This
module reads in the spectral data set and mathematical
pretreatments are applied to the NIR spectra to remove
the scattering of diffuse reflections associated with
sample particle size and improve the subsequent regres-
sion. Spectra were transformed using standard normal
variate (SNV), multiplicative scatter correction (MSC),
detrend (DT), and second derivative Savitzky–Golay
smoothing with two different window sizes of five and
seven points (SG5 and SG7). Additionally, a number of
paired transformations were used, with the scattering
correction methods applied prior to spectral deriva-
tives,28 generating six additional transformed data
sets: standard normal variateþ Savitzky–Golay with
five and seven points (SNV_SG5 and SNV_SG7);
multiplicative scatter correctionþSavitzky–Golay
with five and seven points (MSC_SG5 and
MSC_SG7); and detrendþSavitzky–Golay with five
and seven points (DT_SG5 and DT_SG7). Pre-proces-
sing of our NIR spectral data was done using the R
packages ‘‘pls’’29,30 and ‘‘Prospectr.’’30

To identify outliers, local outliers factors (LOF)
were calculated for all observations on each spectral
database.31 Individuals with LOF values greater than
2 were excluded from the analysis, using a LOF algo-
rithm implemented in the R package ‘‘DMwR.’’32

R-NIR pipeline: Model calibration, cross-validation, and

prediction. The second part of the pipeline merges
wetlab information with the transformed and outlier
free databases, and develops NIR prediction models

for all wood traits mentioned above. Partial least
squares regression (PLS) was implemented in the
R-package ‘‘pls,’’29 and model performance was evalu-
ated using leave-one-out (LOO) cross-validation.
Desirable PLS NIR models are those that (1) maximize
the coefficient of determination (R2

cv), (2) minimize the
SECV, and (3) have a small number of latent variables
(projection factors). Once the best model has been
selected, it can be used to predict cell wall chemical attri-
butes with the NIR spectra (transformed and outlier-
free) for any other samples. The code for the R-NIR
pipeline can be modified to input spectral data sets
other than from the FOSS 6500, and to other mathem-
atical transformations, and it is available upon request.

NIR model development

For each of the four single-species data sets (URO¼
E. urophylla, DUN¼E. dunnii, GLN¼E. globulusþ
E. nitens, and GRA¼E. grandis), NIR models were
developed for the aforementioned 10 wood chemical
traits. A global model combining all four data sets
was also developed.

To examine how well the global models might
extrapolate to other species not included in the original
model, we used models developed on three species data
sets (e.g., data sets A, B, and C) to predict wetlab chem-
ical values for a fourth independent data set (e.g., data
set D). For each wood chemical trait, and for each of
the four ‘‘new species extrapolations’’ (e.g., ABC!D),
we used the data transformation selected as the best for
the four-species global model for the three-species
models and extrapolations. For example, the best
mathematical transformation for the four-species
global model for insoluble lignin was the Savitzky–
Golay second derivative with five points in the convo-
lution window, and six PLS factors. This transform-
ation was used for all lignin model extrapolations
(e.g., ABC!D, ABD!C, etc.).

Finally, a set of four species-trait scenarios was
selected to examine the question of improving global
NIR models for ‘‘new’’ species not included in the ori-
ginal calibration. For a given ABC!D scenario for a
particular trait, 10 random observations from data set
D were included with the ABC data set for model cali-
bration, and then predictions were made for the
remaining 40 observations from data set D. This was
repeated five times, and average R2

p and standard error
of prediction (SEP) were calculated.

Results

Wetlab chemical analyses

Mean wetlab values for all chemical traits across all
four species are presented in Table 2. Mean total
lignin was 28.7%, and mean acid-insoluble lignin was
24.1%. Corresponding laboratory standard errors for a
particular sample measurement of these traits were
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approximately� 0.33% (Table 2). Mean soluble lignin
was 4.5% with a very low lab standard error (�0.07%).
The two major sugar components were glucose with
mean¼ 46.7% (lab standard error �0.54%), and
xylose with mean¼ 12.8% (lab standard error
�0.21%). Minor sugar components galactose and man-
nose content were approximately 1.25%, with lab
standard errors around �0.05%. Mean arabinose con-
tent was slightly lower at 0.32%, but the laboratory
measurements were also very reproducible, with lab
standard error of �0.02%.

Single-species NIR models

Eucalyptus urophylla. NIR models for E. urophylla are
presented in Table 3. The best models were found for
lignin-related traits (total lignin, acid-insoluble lignin,
S/G ratio and S/(SþG), with R2

cv ranging from 0.87 to
0.90. Relatively good models were also found for the
major sugars glucose and xylose, with R2

cv¼ 0.78 and

0.83, respectively. The model for the minor sugar gal-
actose was also good, with R2

cv¼ 0.72. The models for
the other minor sugars arabinose (R2

cv¼ 0.41) and
mannose (R2

cv¼ 0.44), and for soluble lignin
(R2

cv¼ 0.29) were less satisfactory.

Eucalyptus dunnii. NIR models for E. dunnii are pre-
sented in Table 4. The best NIR models for E. dunnii
were found for total lignin, acid-insoluble lignin, glu-
cose and xylose, with R2

cv ranging from 0.60 to 0.76.
Interestingly, the best model for E. dunnii was for the
minor sugar galactose (R2

cv¼ 0.80). For the traits S/G
and S/(SþG), the models were moderate with
R2

cv¼ 0.46 and 0.56, respectively.
In general, the E. dunnii NIR models had fit statistics

inferior to the E. urophylla models (compare Tables 3
and 4). For some traits, this may be related to a smaller
range of observed within-species variation for the
chemical trait. For example, for E. dunnii and the
trait acid-insoluble lignin, the range of observed
wetlab values for model calibration was 4.4% and the
NIR model had R2

cv¼ 0.64. For E. urophylla, the range
of observed acid-insoluble lignin values for model cali-
bration was 15.2% and the NIR model had R2

cv¼ 0.87.
In fact, the SECV was lower for the E. dunnii
acid-insoluble lignin model than for the E. urophylla
model (SECV¼� 0.58% vs.� 1.17%, respectively).
There was a similar pattern observed for S/(SþG):
for E. dunnii, range¼ 9.1%, R2

cv¼ 0.56, and SECV¼
� 1.60%, while for E. urophylla, range¼ 27.3%,
R2

cv¼ 0.87, and SECV¼� 1.75%.

Eucalyptus globulus–Eucalyptus nitens. The NIR models
for E. globulus and E. nitens are presented in Table 5.
In general, the models for this data set ranged from
good to excellent, with R2

cv ranging from 0.86 to 0.96
for lignin, acid-insoluble lignin, S/G, S/(SþG), glucose,
xylose, and galactose. Even the minor sugars, arabinose
and mannose, had good models with R2

cv¼ 0.70 and

Table 3. Fit statistics for Eucalyptus urophylla single-species NIR calibration models for wood chemistry traits.

Wetlab NIR model

Trait % Mean SD Range Transformation Factors R2
c SEC R2

cv SECV RPDcv

Lignin 33.7 3.1 14.8 MSC_SG7 8 0.98 0.410 0.90 0.969 3.20

Acid-insoluble lignin 28.6 3.3 15.2 SNV_SG5 4 0.93 0.835 0.87 1.167 2.83

Soluble lignin 5.1 0.6 2.9 MSC_SG5 4 0.66 0.376 0.29 0.541 1.11

S/G ratio 3.0 0.7 3.3 SG7 9 0.98 0.091 0.90 0.212 3.30

S/(SþG) 74.3 4.9 27.3 SNV_SG7 10 0.99 0.444 0.87 1.745 2.81

Glucose 46.2 2.8 14.4 SNV_SG5 5 0.94 0.700 0.78 1.277 2.19

Xylose 12.0 1.1 4.6 SNV_SG7 6 0.93 0.286 0.83 0.453 2.43

Galactose 1.53 0.61 2.43 MSC_SG7 8 0.94 0.124 0.72 0.317 1.93

Arabinose 0.27 0.06 0.30 MSC_SG5 6 0.92 0.018 0.41 0.048 1.26

Mannose 0.99 0.39 1.81 MSC_SG7 6 0.81 0.172 0.44 0.292 1.34

MSG: multiplicative scatter correction; NIR: near infrared; SD: standard deviation; SEC: standard error of calibration; SECV: standard errors of cross-

validation; SG: Savitzky–Golay; SNV: standard normal variate.

Table 2. Mean wetlab chemistry values for 189 samples from four

species of eucalypts, and lab standard errors for a single sample

wetlab measurement.

Trait % Mean Lab SE

Lignin 28.7 0.3445

Acid-insoluble lignin 24.1 0.3217

Soluble lignin 4.5 0.0776

S/G ratio 4.0 0.0757

S/(SþG) 78.4 0.2560

Glucose 46.7 0.5453

Xylose 12.8 0.2118

Galactose 1.17 0.0451

Arabinose 0.32 0.0168

Mannose 1.33 0.0647
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0.74, respectively. For glucose, the range of E. globulus–
E. nitens wetlab values was larger than for both
E. urophylla and E. dunnii (20.6% vs. 14.4% and
10.1%, respectively), while the SECV for three species
were roughly similar. Similarly, for xylose, the E. glo-
bulus–E. nitens range was 10.7%, vs. 4.6% and 5.7%,
for E. urophylla and E. dunnii, respectively. This was
broadly true for most of the other variables as well: the
range in wetlab values was larger for E. globulus–
E. nitens than in E. urophylla and E. dunnii, which con-
tributes to higher R2

cv.

Eucalyptus grandis. The NIR models for E. grandis are
presented in Table 6. In general, the NIR models for E.
grandis were moderate to good. The best models were
found for S/G and S/(SþG), with R2

cv¼ 0.87 and 0.93,
respectively. Good models were also found for total
lignin and acid-insoluble lignin, with R2

cv¼ 0.72 and

0.78, respectively. Moderately good models were
found for the major sugars, glucose and xylose, with
R2

cv¼ 0.69 and 0.68, respectively. Among the minor
sugars (galactose, arabinose, mannose), the best
model was found for galactose (R2

cv¼ 0.81 vs. 0.50
and 0.55, respectively); this was consistent with the
results from the other three species.

Comparisons among species for chemical
composition

For each of the four species, the appropriate single-
species NIR models were used to predict chemical
traits for the entire population of samples (from
which the small wetlab subpopulation was selected).
For example, the E. urophylla NIR models (Table 3)
were used to predict values for all 1672 E. urophylla
(Table 1), and similarly for the other three species.

Table 5. Fit statistics for Eucalyptus globulusþ Eucalyptus nitens NIR calibration models for wood chemistry traits.a

Trait %

Wetlab NIR model

Mean SD Range Transformation Factors R2
c SEC R2

cv SECV RPDcv

Lignin 23.8 3.0 14.2 MSC_SG7 5 0.98 0.452 0.96 0.613 4.89

Acid-insoluble lignin 18.6 2.8 13.0 SG7 10 0.99 0.160 0.96 0.528 5.30

Soluble lignin 5.2 0.6 2.5 SNV_SG7 8 0.97 0.110 0.77 0.287 2.09

S/G ratio 5.6 1.4 5.2 MSC_SG7 8 0.98 0.195 0.86 0.515 2.72

S/(SþG) 84.1 3.7 13.8 SG7 12 0.99 0.146 0.92 1.047 3.53

Glucose 46.9 4.2 20.6 MSC_SG5 9 0.99 0.182 0.90 1.296 3.24

Xylose 11.7 2.6 10.7 SG7 5 0.98 0.386 0.96 0.517 5.03

Galactose 1.45 1.25 6.00 SNV_SG7 8 0.99 0.081 0.97 0.213 5.88

Arabinose 0.38 0.11 0.55 SG5 8 0.98 0.014 0.70 0.061 1.80

Mannose 1.50 0.70 3.12 SNV_SG7 8 0.98 0.094 0.74 0.341 2.05

MSG: multiplicative scatter correction; NIR: near infrared; SD: standard deviation; SEC: standard error of calibration; SECV: standard errors of cross-

validation; SG: Savitzky–Golay; SNV: standard normal variate.
aThe initial prescreen data set included 408 samples of E. globulus and 72 samples of E. nitens. The final wetlab data set included 41 samples of E. globulus

and 9 samples of E. nitens.

Table 4. Fit statistics for Eucalyptus dunnii single-species NIR calibration models for wood chemistry traits.

Wetlab NIR model

Trait % Mean SD Range Transformation Factors R2
c SEC R2

cv SECV RPDcv

Lignin 27.3 1.1 5.3 MSC_SG7 9 0.98 0.158 0.76 0.542 2.03

Acid-insoluble lignin 23.4 1.0 4.4 SG7 6 0.89 0.327 0.64 0.581 1.72

Soluble lignin 3.9 0.7 2.5 SG5 2 0.24 0.576 0.08 0.639 1.10

S/G ratio 4.5 0.7 2.9 SG7 7 0.89 0.249 0.46 0.547 1.28

S/(SþG) 81.6 2.4 9.1 SG7 7 0.91 0.729 0.56 1.604 1.50

Glucose 46.4 2.6 10.1 MSC_SG7 3 0.77 1.335 0.60 1.602 1.62

Xylose 15.1 1.4 5.7 SNV_SG5 3 0.83 0.596 0.69 0.796 1.76

Galactose 0.94 0.34 1.54 SNV_SG7 9 0.99 0.040 0.80 0.145 2.35

Arabinose 0.41 0.06 0.27 SG7 11 0.99 0.005 0.70 0.032 1.87

Mannose 1.41 0.49 2.05 SG5 4 0.79 0.224 0.38 0.384 1.28

MSG: multiplicative scatter correction; NIR: near infrared; SD: standard deviation; SEC: standard error of calibration; SECV: standard errors of cross-

validation; SG: Savitzky–Golay; SNV: standard normal variate.
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For the four species, boxplots of the chemical traits for
the wetlab and full population were fairly similar (e.g.,
Figure 2), with the range of the 25th to 75th percentile
slightly wider in the wetlab population, and the tails

slightly wider in the full population. This would be
expected, since the wetlab populations were small sam-
ples from the full population, which were intended to
be somewhat uniformly sampled across the range.

Figure 1. Boxplots for wood chemistry traits for four different Eucalyptus species data sets (URO¼ Eucalyptus urophylla; DUN¼ Eucalyptus

dunnii; GLN¼ Eucalyptus globulusþ Eucalyptus nitens, GRA¼ Eucalyptus grandis). For each species, the left box plot represents wetlab data

for the small subset of samples selected by near infrared (NIR) pre-screening, and the right box plot represents NIR predictions for the

entire population of samples, with predictions done using the appropriate single-species NIR calibration model developed in this study.

Table 6. Fit statistics for Eucalyptus grandis single-species NIR calibration models for wood chemistry traits.

Trait %

Wetlab NIR model

Mean SD Range Transformation Factors R2
c SEC R2

cv SECV RPDcv

Lignin 30.3 2.2 10.7 SG7 9 0.98 0.311 0.72 1.128 1.95

Acid-insoluble lignin 26.6 2.3 10.5 SG7 9 0.99 0.273 0.78 1.041 2.21

Soluble lignin 3.7 0.6 2.3 SNV_SG7 10 0.99 0.036 0.74 0.290 2.07

S/G ratio 2.7 0.5 2.4 MSC_SG7 7 0.98 0.074 0.87 0.192 2.61

S/(SþG) 72.1 4.3 18.1 SNV_SG7 7 0.99 0.480 0.93 1.117 3.85

Glucose 47.6 3.3 15.5 MSC_SG7 2 0.77 1.538 0.69 1.788 1.85

Xylose 12.2 2.0 6.9 SNV 6 0.89 0.701 0.68 1.072 1.87

Galactose 0.64 0.41 1.85 SG7 3 0.76 0.200 0.81 0.275 1.49

Arabinose 0.20 0.02 0.10 SNV_SG7 7 0.91 0.007 0.50 0.016 1.25

Mannose 1.47 0.72 2.74 MSC_SG7 3 0.77 0.345 0.55 0.479 1.50

MSG: multiplicative scatter correction; NIR: near infrared; SD: standard deviation; SEC: standard error of calibration; SECV: standard errors of cross-

validation; SG: Savitzky–Golay; SNV: standard normal variate.
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Of more interest are some of the differences observed
among the four species groups. Notably, the E. globu-
lus–E. nitens populations had the lowest acid-insoluble
lignin and highest S/(SþG) (18% and 85%), closely
followed by E. dunnii with 24% acid-insoluble lignin
and 82% S/(SþG). The E. grandis and E. urophylla
had higher acid-insoluble lignin (26% and 28%,
respectively) and lower S/(SþG) (73% and 75%,
respectively), values which make these species less desir-
able for pulp production. The four species groups had
similar distributions for glucose, but E. dunnii was unu-
sual with its high xylose content, roughly 15% com-
pared to 12% for the other three species groups.

Global calibration models—All data sets

Global NIR model statistics for a multiple-
species model (all four data sets) are presented in

Table 7. In general, the global models tended to
include more factors than the single-species models;
across all 10 traits the mean number of factors
was 6.8 for the single-species models, and 9.7 for the
global models. This could simply be a result of
the larger data set (186 observations for the glo-
bal model vs. 36 to 50 observations for the single-
species models), or could be necessitated by the
presence of different species requiring more complex
models to account for the inherent variation in wood
chemistry.

Very good to excellent models were obtained for
total lignin, acid-insoluble lignin, S/G, S/(SþG),
xylose and galactose, with R2

cv ranging from 0.89 to
0.96. The models for glucose, arabinose, and mannose
were moderate to good, with R2

cv ranging from 0.72 to
0.75 for the three traits. SECV for the global models
was similar to but slightly larger than the average
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Figure 2. Global eucalyptus near infrared (NIR) cross-validation scatterplots for acid-insoluble lignin, S/(SþG), glucose, and xylose

content. Laboratory-determined chemical content is on the x-axis, and NIR predicted value is on the y-axis.
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SECV in the four single-species models. For example,
for acid-insoluble lignin, the average single-species
SECV was �0.829%, while the global SECV was
�0.905%. Similarly, for glucose, the average single-
species SECV was �1.491%, while the global SECV
was �1.680%. The only exception to this trend was
for the trait S/(SþG), where the average single-
species SECV was� 1.378%, while the global SECV
was �1.334%.

For many breeders interested in pulp and paper
breeding objectives, the four most important wood
chemical traits are glucose, xylose and acid-insoluble
lignin content, and S/(SþG). Glucose is the primary
component of cellulose, which is the target of the
pulping process, and xylose is the other major sugar
in wood, and is negatively associated with glucose
content (i.e., wood with more xylose will typically
have lower glucose). Acid-insoluble lignin is important
because is the primary target for removal in the chem-
ical pulping process. Regarding lignin composition
(syringyl and guaiacyl lignin content), a high S/G
ratio (or a high S/(SþG)) is beneficial in the pulping
process in terms of reduction in chemical costs, as
syringyl-rich lignins are inherently rich in cleavable
b-ethers, making them less recalcitrant to the chemical
pulping process.33 Moreover, the greater the inherent
incorporation of syringyl monomers into the lignin,
the more linear the polymer (bond limitations imposed
by the monomers largely only participating in b-0-4
linkages) and hence a greater ease of extraction during
chemical processing. NIR model calibrations were
better (higher R2

cv and lower SECV) for the alternate
expression of syringyl content, S/(SþG) than for the
standard expression S/G for three of the four species
and for the global calibration. For this reason, the
trait S/(SþG) will be highlighted throughout the
remainder of this manuscript.

Extrapolation of models to independent
data sets (ABC!D)

It seems clear from the above results that the single-
species and global models in this study could be used
to predict values for samples from the same or similar
populations. To examine the question of how well these
models could be extended or extrapolated to independ-
ent data sets with samples from different species, all
possible three-species models were be used to predict
chemical traits for the fourth species data set.

Extrapolations were investigated for four important
chemical traits (acid-insoluble lignin content, S/(SþG),
glucose, and xylose). For acid-insoluble lignin and with
the four-species global data set, the selected model used
the paired SNV-SG5 transformation (Table 7). This
transformation was then used for all four extrapola-
tions, that is, ABC!D, ABD!C, etc., in other
words, the calibration model was built using three spe-
cies data sets (ABC), and then predictions for acid-
insoluble lignin were made for data set D, etc.
Similarly, investigation of S/(SþG) extrapolations was
done using the SNV_SG7 transformation, for glucose
the SNV_SG5 transformation was used, and for xylose
the SNV_SG7 transformation was used. To examine
how well the extrapolations functioned, model fit
statistics for the predictions (R2

p, and SEP) were
compared to the model fit statistics of the single-
species cross-validation (R2

cv, SECV). The results of
the ABC!D extrapolations are presented in complete
detail in Table 8, but will be summarized here.

Across the 16 scenarios examined (four different
traits� four different species extrapolations), there
was a wide range in the quality of the extrapolation
predictions from very good to poor. Comparing the
four traits, the best extrapolations were found for the
lignin traits (acid-insoluble lignin and S/(SþG)), and

Table 7. Fit statistics for global Eucalyptus NIR calibration models for wood chemistry traits.a

Trait %

Wetlab NIR model

Mean SD Range Transformation Factors R2
c SEC R2

cv SECV RPDcv

Lignin 28.7 4.6 26.0 SG5 7 0.97 0.846 0.95 1.055 4.36

Acid-insoluble lignin 24.1 4.6 25.2 SNVþ SG5 6 0.97 0.751 0.96 0.905 5.08

Soluble lignin 4.5 0.9 3.9 SG7 10 0.81 0.404 0.65 0.545 1.70

S/G ratio 4.0 1.5 7.1 MSCþ SG7 9 0.91 0.454 0.86 0.551 2.71

S/(SþG) 78.4 6.3 34.9 MSCþ SG7 11 0.98 0.909 0.95 1.334 4.69

Glucose 46.7 3.3 20.6 MSCþ SG7 9 0.84 1.312 0.74 1.680 1.95

Xylose 12.8 2.3 12.4 SNVþ SG7 9 0.94 0.580 0.89 0.754 3.09

Galactose 1.17 0.82 6.07 SG7 13 0.97 0.150 0.91 0.252 3.27

Arabinose 0.32 0.11 0.63 SG7 8 0.81 0.048 0.72 0.058 1.91

Mannose 1.33 0.61 3.29 SG7 15 0.94 0.148 0.75 0.307 2.00

MSG: multiplicative scatter correction; NIR: near infrared; SD: standard deviation; SEC: standard error of calibration; SECV: standard errors of cross-

validation; SG: Savitzky–Golay; SNV: standard normal variate.
aThe data set includes samples of Eucalyptus urophylla (n¼ 50), Eucalyptus dunnii (n¼ 50), Eucalyptus globulus (n¼ 41), Eucalyptus nitens (n¼ 9), and

Eucalyptus grandis (n¼ 36). Mean, SD, and range are for the wetlab data, fit statistics are for calibration and leave-one-out cross-validation.
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the poorest extrapolations were for glucose (Table 8).
Comparing the species, the best extrapolations were
found for E. globulus–E. nitens, with good to excellent
predictions for all four traits. For this data set, across
the four traits, the single-species R2

cv ranged from 0.90
to 0.96, and the extrapolation R2

p ranged from 0.85 to
0.93. In comparison, for the E. dunnii extrapolations,
the predictions were moderately good for S/(SþG)
(R2

p¼ 0.64), but moderately poor for acid-insoluble
lignin and xylose (R2

p¼ 0.40 and 0.41), and very poor
for glucose (R2

p¼ 0.17).
For four species-trait scenarios, the extrapolation

predictions equaled or exceeded the quality of the
single-species cross-validations. For the E. urophylla
extrapolation and the trait acid-insoluble lignin, the
prediction fit was slightly better than the cross-valida-
tion fit, with R2

p¼ 0.90 and SEP¼ 1.08, versus
R2

cv¼ 0.87 and SECV¼ 1.17. Similarly, for the
E. grandis extrapolation for the trait acid-insoluble
lignin, R2

p was slightly greater than R2
cv (0.80 vs.

0.78, respectively). Also for the E. grandis extrapolation

for the trait S/(SþG), the prediction fit was slightly
superior to the single-species cross-validation fit:
R2

p¼ 0.97 and SEP¼ 0.81, versus R2
cv¼ 0.93 and

SECV¼ 1.12. Finally, for E. dunnii and the trait
S/(SþG), R2

p was slightly better than R2
cv, and SEP

was slightly worse than SECV.
For at least five of the species-trait scenarios, the

extrapolation predictions were excellent, relative to
the single-species cross-validations: For the E. globu-
lus–E. nitens data set, extrapolations for all four traits
had R2

p only slightly less than R2
cv (Table 8), and for

the E. grandis–xylose scenario, R2
p 0.67 compared to

R2
cv¼ 0.68 for the single-species cross-validation. For

the E. urophylla–xylose scenario, R2
p¼ 0.68 from the

extrapolation was substantially less than the single-
species R2

cv¼ 0.83, but it was still high enough to be
useful in a breeding program.

For the remaining 6 out of 16 trait-species scenarios,
the extrapolation fit statistics were clearly worse than
the single-species cross-validation fit statistics, with
average R2

p¼ 0.42, while average R2
cv¼ 0.71.

Table 8. Fit statistics for extrapolations of a three-species NIR model to predict Eucalyptus wood chemistry for an independent fourth

species of Eucalyptus.

Trait

URO cross-validation URO prediction with DUN, GLN, GRA

Mean SD Range R2
cv SECV Mean SD Range R2

p SEP RPDp

Acid-insoluble lignin 28.6 3.3 15.2 0.87 1.17 26.5 2.8 15.3 0.90 1.08 3.03

S/(SþG) 74.3 4.9 27.3 0.87 1.75 77.4 4.9 27.6 0.45 3.98 1.23

Glucose 46.2 2.8 14.4 0.78 1.28 42.7 5.0 25.2 0.58 3.04 0.92

Xylose 12.0 1.1 4.6 0.83 0.45 11.0 1.4 5.8 0.68 0.78 1.42

DUN cross-validation DUN prediction with URO, GLN, GRA

Trait Mean SD Range R2
cv SECV Mean SD Range R2

p SEP RPDp

Acid-insoluble lignin 23.4 1.0 4.4 0.64 0.58 23.4 1.0 3.9 0.40 0.83 1.32

S/(SþG) 81.6 2.4 9.1 0.56 1.60 83.9 2.7 12.7 0.64 1.66 1.47

Glucose 46.4 2.6 10.1 0.60 1.60 45.4 3.3 15.6 0.17 3.24 0.80

Xylose 15.1 1.4 5.7 0.69 0.80 13.7 1.4 6.5 0.41 1.22 1.19

GLN cross-validation GLN prediction with URO, DUN, GRA

Trait Mean SD Range R2
cv SECV Mean SD Range R2

p SEP RPDp

Acid-insoluble lignin 18.6 2.8 13.0 0.96 0.53 19.0 2.9 14.2 0.93 0.80 3.45

S/(SþG) 84.1 3.7 13.8 0.92 1.05 82.0 3.5 14.1 0.90 1.18 3.14

Glucose 46.9 4.2 20.6 0.90 1.30 54.2 6.0 30.8 0.85 2.67 1.55

Xylose 11.7 2.6 10.7 0.96 0.52 12.3 3.2 15.1 0.93 1.01 2.54

GRA cross-validation GRA prediction with URO, DUN, GLN

Trait Mean SD Range R2
cv SECV Mean SD Range R2

p SEP RPDp

Acid-insoluble lignin 26.6 2.3 10.5 0.78 1.04 27.3 1.9 7.7 0.80 1.04 2.20

S/(SþG) 72.1 4.3 18.1 0.93 1.12 71.7 4.4 17.8 0.97 0.81 5.26

Glucose 47.6 3.3 15.5 0.69 1.79 47.5 2.8 11.6 0.51 2.35 1.39

Xylose 12.2 2.0 6.9 0.68 1.07 12.4 1.6 6.9 0.67 1.13 1.73

Note: Results of single-species wetlab values and cross-validation (left side of the table) are compared to trait predictions and fit statistics from a three-

species NIR model to predict that target species (right side of the table). SD: standard deviation; SECV: standard errors of cross-validation; SEP: standard

error of prediction; URO: Eucalyptus urophylla; DUN: Eucalyptus dunnii; GLN: Eucalyptus globulusþ E. nitens; GRA: Eucalyptus grandis.
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Improvement of global models

We wished to examine the question of how global cali-
bration models could be improved in terms of predic-
tion fit statistics for a ‘‘new’’ species not in the current
models. Specifically, we wanted to examine the impact
of incorporating a small number of wetlab observations
from the ‘‘new’’ species into the calibration model.
Four species-trait extrapolation scenarios were chosen:

. Eucalyptus urophylla extrapolation, glucose, and
S/(SþG)

. Eucalyptus dunnii extrapolation, glucose, and acid-
insoluble lignin

These four scenarios each represent cases where the pre-
diction fit statistics were significantly worse than the
single-species cross-validation fit statistics (Table 8).
The two E. urophylla scenarios represent cases where
there is a relatively wide range of variation in the
wetlab values for the trait to be predicted (e.g., the largest
range in S/(SþG) among all four species). In contrast,
the two E. dunnii scenarios represent cases where there is
more narrow range of variation in the wetlab values
(for both traits, the smallest range of all four species).

The process of examining global model improvement
will be illustrated for the scenario for E. dunnii and the
trait glucose. The E. dunnii data set contained 50 wetlab
observations, and these were divided randomly into five
sets of 10 observations. One set of 10 E. dunnii observa-
tions was incorporated into the global calibration model
containing 50 E. urophyllaþ 36 E. grandisþ 50 E. globu-
lus–E. nitens observations. The calibration model was
developed as described above, and used to predict the
remaining 40 E. dunnii glucose observations. This was
repeated five times for each of the five sets of 10 obser-
vations, and average R2

p and SEP were calculated. This
same process was repeated for the other three species-
trait scenarios. For a particular ABC!D extrapolation,
the single-species R2

cv and SECV for species D provide
an upper baseline for comparison, while the R2

p and
SEP for the initial predictions using the ABC calibration
are the lower baseline. These values can be compared to
the R2

p and SEP from the model developed with the 136
observations from the A, B, and C species plus 10 obser-
vations from the new species D.

The inclusion of 10 samples of a ‘‘new’’ species into a
global calibration made a significant improvement in
the prediction fit statistics (Figure 3). For E. urophylla
S/(SþG), single-species R2

cv¼ 0.87 and the extrapola-
tion prediction R2

p¼ 0.45. With 10 observations from
E. urophylla included in the calibration, the mean R2

p

for the remaining E. urophylla observations was
R2

p¼ 0.82, with a substantial reduction in SEP. For
E. urophylla glucose, single-species R2

cv¼ 0.78 and the
extrapolation prediction R2

p¼ 0.58. Adding 10 obser-
vations from E. urophylla to the calibration improved
the R2

p to 0.71. Similarly, for E. dunnii acid-insoluble
lignin, single-species R2

cv¼ 0.78, R2
p¼ 0.58, and the

improved-R2
p was 0.52. For the most challenging spe-

cies-trait scenario, E. dunnii–glucose, the single-species
R2

cv was 0.60, and the extrapolation was very poor,
R2

p¼ 0.17). Adding 10 observations of E. dunnii into
the calibration improved the R2

p to 0.40, which is still
only moderate, but much closer to the upper baseline of
the single-species R2

cv of 0.60.

Discussion

NIR models to predict wood chemistry traits

In this study, very good multi-species models were
obtained for total lignin and acid-insoluble lignin con-
tent and lignin composition (S/G, S/(SþG)), and xylose
and galactose content. Models for glucose, arabinose,
and mannose were moderate to good. Zhou et al.34

reported on models developed for E. dunnii with a 70-
sample data set that also examined both lignin and
sugar contents. The highest R2 values were for lignin
content (R2

cv¼ 0.87), with all models for sugar content
having slightly worse fit (cellulose R2

cv¼ 0.80, glucose
R2

cv¼ 0.84, xylose R2
cv¼ 0.82, arabinose R2

cv¼ 0.71,
mannose R2

cv¼ 0.63). Perhaps there is a general trend
that lignin-related traits can be predicted slightly more
accurately and more precisely than glucose-related
traits (e.g., pulp yield, cellulose composition). This
agrees with findings for a mixed-species pine model
for lignin and cellulose content.24

Other authors have reported good NIR calibrations
for lignin content, S/G, cellulose content, and kraft
pulp yield for a number of eucalypt species. For the
trait S/G in E. urophylla (178 samples), Alves et al.35

reported R2
cv¼ 0.97 and R2

p¼ 0.96, similar to but
higher than the value obtained in this study
(R2

cv¼ 0.90, Table 3). Also for S/G in mixed species
data set (120 samples total, E. camaldulensis, E. grandis,
E. urophylla, E. pellita, and E. alba), Ramadevi et al.36

reported R2
cv¼ 0.83. This is very similar to the

R2
cv¼ 0.86 for the global model in the current study

(Table 7). For the traits S/G and acid-insoluble lignin
in a E. urophylla�E. grandis hybrid data set (193 sam-
ples), Baillères et al.37 reported R2

cv¼ 0.87 and 0.90,
respectively, similar to the values reported for E. uro-
phylla (Table 3) and E. grandis (Table 6) in this study.
Regarding glucose-related traits, Downes et al.38

reported good models for kraft pulp yield and cellulose
using a very large mixed-species data set (44 species and
over 1300 samples): for pulp yield, R2

cv¼ 0.90 and
R2

p¼ 0.80, while for cellulose content R2
cv¼ 0.90 and

R2
p¼ 0.85. For cellulose content in E. nitens, Schimleck

et al.2 reported on three single-site NIR models (60
trees for calibration and 108–128 trees for validation)
with average R2

cal¼ 0.74 and R2
p¼ 0.67.

S/G versus S/(SþG)

S/G ratio measures the relative abundance of syringyl
and guaiacyl lignin monomers, and it is an important
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and well known trait in the pulping literature.33 In this
study, an alternate formulation of the lignin compos-
ition was examined, S/(SþG). In three of the four
single-species data sets, the NIR models had better fit
statistics for S/(SþG) than for S/G. This was true also
for the global model, where the model for S/(SþG) had
R2

cv¼ 0.95 and RPDcv¼ 4.69, versus R2
cv¼ 0.86 and

RPDcv¼ 2.71 for S/G.
Analyses of genetic trials of E. dunnii and E. grandis

indicate that the S/(SþG) variable has higher

heritability than the S/G variable,39,40 and therefore
breeders may wish to use S/(SþG) for NIR models
and genetic rankings, then convert back to S/G for
use of the data by pulp researchers. The conversion
between the two variable formulations is quite simple:

For S/G ¼ X

X

Xþ 1
¼ S=ðSþ GÞ

Figure 3. Prediction fit statistics for single-species near infrared (NIR) calibration, a mixed-species NIR calibration (minus the target

species), and a mixed-species NIR calibration (þ10 samples of the target species). Four species-trait scenarios were selected for study, all

of which had poor mixed-species predictions compared to the single-species cross-validations: two traits from Eucalyptus urophylla with a

large range of the wetlab value to be predicted, and two traits from Eucalyptus dunnii with a small range of the wetlab value to be

predicted.
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For S/(SþG) ¼ Y

Y

ð1� YÞ
¼ S=G

Glucose, lignin, and pulp yield

In this study, the NIR models were developed for sugar
and lignin content and composition. For many pulp
and paper producers, the most important breeding
objective would actually be pulp yield, and in fact,
much work has been done to develop NIR models for
pulp yield in eucalypts.8,9,38,41–44 Measuring pulp yield
is typically slow and expensive, and requires large
sample sizes, typically from 1 to 5 kg of oven-dried
woodchips. Furthermore, pulp yield estimates are spe-
cific to the particular cooking conditions (time, tem-
perature, chemicals) and often to a specific kappa
number. For a given organization, it may be possible
to develop laboratory conditions to mimic the large-
scale mill conditions that apply. However, in this
case, the NIR models were being developed for a
large number of mills, each with their own specific pro-
cesses. Relative to assessing pulp yield, assessing wood
chemical composition is relatively inexpensive, and it
can be done with smaller amounts of wood. Many of
these traits have been shown to highly correlated to
pulp yield.38,45,46 For example, in a multiple-species
data set, Downes et al.38 found a correlation of
R2
¼ 0.85 between laboratory pulp yield and laboratory

cellulose content, and a similar correlation between
NIR predictions of pulp yield and cellulose content
(R2
¼ 0.88). Kien et al.46 found a similar correlation

(R2
¼ 0.83) between pulp yield and cellulose content

for a single-species data set of E. urophylla. In an
E. camaldulensis data set, Ramadevi et al.36 found a
strong relationship between S/G ratio and kraft pulp
yield (R2

¼ 0.71), and between S/G and alkali consump-
tion (R2

¼ 0.91). It seems reasonable that pulp research-
ers could identify which of the sugar and lignin traits
that can be predicted by the current models have the
strongest impact on pulp yield (and pulping costs) in
their own organization.

Utility of the models

Sandak et al.47 provide some guidelines to assess the
quality and utility of NIR models for use in forestry.
In general, models should have high R2, low SECV and
SEP, a low bias, and a slope near one. NIR models can
be employed for the purposes of quality control in a
laboratory or production facility, in which case the
standards for a ‘‘good’’ model may be quite high, for
example, R2

� 0.90 and RPD� 5.0. Tree breeders are
primarily interested in accurate ranks or comparison
between genotypes (a ‘‘screening’’ application), so the
criteria for a ‘‘good’’ model may be lower, for example,
R2
� 0.80 and RPD� 2.0. The global models in this

study (Table 7) meet or exceed the latter criteria for
‘‘good’’ screening models for 7 of the 10 variables
(total lignin, acid-insoluble lignin, S/G, S/(SþG),
xylose, galactose, and mannose). The global models
for glucose (R2

cv¼ 0.74 and RPDcv¼ 1.95) and arabin-
ose (R2

cv¼ 0.72 and RPDcv¼ 1.91) are just below the
thresholds for ‘‘good’’ screening models.

The assessment of NIR model quality and utility is
somewhat subjective,48 and researchers must examine
the fit statistics of the available NIR models to deter-
mine if they can be used to meet their specific objective.
To evaluate the current models for the purposes of tree
breeding, it is important to remember that the R2, RPD
and standard errors in this study apply to the measure-
ment of a single 4g sample of woodmeal. Breeders are
ultimately interested ranking genotypes for their under-
lying breeding value or clonal genetic value for a par-
ticular trait of interest, and this is done by sampling
multiple offspring from a given parent or full-sib
family to provide estimates of parental or family gen-
etic value, or of multiple ramets of a given clone to
estimate clonal genetic value. Thus, a selection decision
would not be made on the basis of a single sample NIR
prediction, rather, multiple observations from all
related genotypes are considered, typically through
the use of a mixed-model genetic analysis to calculate
best linear unbiased predictions (BLUPs) of genetic
values. Breeders also use genetic parameter estimates
to evaluate the precision of those BLUPs.

Relevant to the current study are the results reported
for Eucalyptus nitens by Schimleck et al.2 and E. pellita
by Hung et al.5 for NIR-predicted traits using models
with fit statistics comparable to the current models (i.e.,
R2
¼ 0.80 to 0.85). For E. nitens, the authors found

high heritability (h2¼ 0.60–0.70) and low levels of
genotype� environment interaction (Type G genetic
correlation,49 rBg¼ 0.85–0.95) for both laboratory and
NIR-determined cellulose content. Similarly, estimated
genetic parameters for kraft pulp yield for E. pellita5

(predicted using NIR models from Meder et al.50) indi-
cate an average single-site heritability of h2¼ 0.37 and a
Type B genetic correlation rBg¼ 0.85. If these genetic
parameter are typical of chemical traits for most euca-
lypt species, sampling 10 trees per family on each of two
sites would result in family heritability between 0.80
and 0.90, which would produce very precise rankings
of parental genotypes. Similarly, for clonal selection,
breeders would typically assess a number of ramets
from the same clone, and clonal heritabilities of
H2
� 0.90 would be likely.

Age variation among samples

In many eucalypt breeding programs, growth is mea-
sured at half-rotation age, and breeders will generally
measure wood traits at that same age, or 1 or 2 years
later. Rotation ages for tropical and subtropical euca-
lypts grown for pulp are often around 8 years, while for
temperate eucalypts, pulp rotations might be as long
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as 12 years. Under these scenarios, wood samples
would often be taken at ages ranging from 4 to
8 years old. The models in this study included samples
ranging in age from 4 years (all of the E. dunnii sam-
ples) to 13 years (for some of the E. urophylla samples)
to 25 years old (for some of the E. globulus-E. nitens
samples. These age differences should be kept in mind
when comparing among species for chemical properties
in this study. However, since the global models cover a
very broad range of values for all traits, and the preci-
sion of the predictions seem very uniform across the
range, we do not believe the age differences among
the calibration samples in this study will have any
impact on the precision of rankings (i.e., comparisons
of genotypes) in future studies.

Utility for extrapolation to new species

While the current global model could be used to make
predictions for new data sets of the species included in
this study (E. urophylla, E. dunnii, E. grandis, E. globu-
lus, and E. nitens), we may wish to use these models on
other eucalypt species not included in the calibration
data set. In this situation, a breeder would expect
that, in general, extrapolation predictions would be at
least moderately useful for most species and most traits.
A better approach would be to incrementally improve
the model by adding a few samples of the new species
into the calibration data set. It has been demonstrated
that the addition of just a few samples from a new data
set into the calibration model can greatly improve the
predictions for the remainder of that data set,51 and the
current results suggest that the addition of 10 samples
of the ‘‘new’’ species into the calibration data set makes
substantial improvement in the prediction fit statistics.
In this study, the 10 samples were randomly selected,
but in fact the 50 samples of a given species (from which
the 10 random samples were chosen) had already been
preselected to cover a range of chemical and spectral
variation. Thus, it might be wise to screen a few hun-
dred samples of the new species, and use the current
NIR models to ensure that the 10 samples selected for
wetlab analysis and inclusion in the calibration equa-
tion do indeed cover some of the range of variation for
important wood properties.
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