Terpenes associated with resistance against the gall wasp, *Leptocybe invasa*, in *Eucalyptus grandis*

Sanushka Naidoo\(^1\) | Nanette Christie\(^1\) | Juan J. Acosta\(^2\) | Makobatjatji M. Mphahlele\(^3\) | Kitt G. Payn\(^3\) | Alexander A. Myburg\(^1\) | Carsten Külheim\(^4\)

\(^1\)Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag x20, Pretoria 0028, South Africa
\(^2\)Camcore, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695-8008, USA
\(^3\)Mondi Forests, Trhaar Technology Centre, P.O. Box 12, Hilton 3245, South Africa
\(^4\)Research School of Biology, Australian National University, 46 Sullivans Creek Road, Canberra 2601 Australian Capital Territory, Australia

Correspondence
S. Naidoo, Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag x20, Pretoria 0028, South Africa.
Email: sanushka.naidoo@up.ac.za

Funding information
Department of Science and Technology Eucalyptus; National Research Foundation, Grant/Award Number: 89669

Abstract

Leptocybe invasa is an insect pest causing gall formation on oviposited shoot tips and leaves of *Eucalyptus* trees leading to leaf deformation, stunting, and death in severe cases. We previously observed different constitutive and induced terpenes, plant specialized metabolites that may act as attractants or repellents to insects, in a resistant and susceptible clone of *Eucalyptus* challenged with *L. invasa*. We tested the hypothesis that specific terpenes are associated with pest resistance in a *Eucalyptus grandis* half-sib population. Insect damage was scored over 2 infestation cycles, and leaves were harvested for near-infrared reflectance (NIR) and terpene measurements. We used Bayesian model averaging for terpene selection and obtained partial least squares NIR models to predict terpene content and *L. invasa* infestation damage. In our optimal model, 29% of the phenotypic variation could be explained by 7 terpenes, and the monoterpene combination, limonene, \(\alpha\)-terpineol, and 1,8-cineole, could be predicted with an NIR prediction ability of .67. Bayesian model averaging supported \(\alpha\)-pinene, \(\gamma\)-terpinene, and iso-pinocarveol as important for predicting *L. invasa* infestation. Susceptibility was associated with increased \(\gamma\)-terpinene and \(\alpha\)-pinene, which may act as a pest attractant, whereas reduced susceptibility was associated with iso-pinocarveol, which may act to recruit parasitoids or have direct toxic effects.

KEYWORDS

attractant, GC–MS, NIR, plant defence, repellent

1 | INTRODUCTION

Eucalyptus species, native to Australia and the surrounding islands, have been adopted as plantation species in various parts of the world for timber, pulp, and paper production (Gomes, Longue, Colodette, & Ribeiro, 2014; Javaregowda & Prabhu, 2010). Some *Eucalyptus* species, used in essential oil production, have been earmarked as a potential source of speciality biofuels (Iqbal, Akhtar, Qureshi, Akhter, & Ahmad, 2011; Mewalal et al., 2017). The high economic value of *Eucalyptus* plantations is jeopardized by various pests and diseases (Wingfield et al., 2008). One such pest is the blue gum chalcid, *Leptocybe invasa* Fisher & La Salle (Hymenoptera: Eulophidae) that causes significant losses to eucalypts (Chang, Arnold, & Zhou, 2012; Javaregowda & Prabhu, 2010; Mendel, Protasov, Fisher, & La Salle, 2004).

The *L. invasa* gall wasp was first reported in Israel in 2000 (Mendel et al., 2004), and since then, the occurrence of *L. invasa* is concomitant with *Eucalyptus* production having been recorded in countries in the Mediterranean basin, Africa, United States, and Asia (Mutitu, 2003; Nyeko, 2005; Wiley & Skelley, 2008; Zhu, Ren, Qiu, Huang, & Peng, 2012). In South Africa, the insect pest was first reported in 2007 (Wylie & Speight, 2012) and has devastating impact on nursery seedlings and young plantations.

The adult female wasp, approximately 1.2 mm in length, oviposits on the shoot tips, petioles, midribs, and stems of young *Eucalyptus*
trees, seedlings, and coppice growth (Mendel et al., 2004; Quang Thu, Dell, & Isobel Burgess, 2009; Zhu et al., 2012). Galls begin to develop 2 weeks after oviposition. The bump-shaped galls become pink to red in colour and coalesce. After a period of 5 months, the adult wasps emerge from the gall to reinfect the Eucalyptus plants (Mendel et al., 2004; Quang Thu et al., 2009; Zhu et al., 2012). Symptoms on the host range from evidence of oviposition with no gall development, contortion of leaves and shoot deformation, loss of apical dominance, die back (Kelly et al., 2012; Mendel et al., 2004), and, in severe cases, death (Nyeko, Mutitu, & Day, 2009; Wylie & Speight, 2012).

Despite investigation into chemical and silvicultural control strategies, biological control is identified as a promising means of limiting this pest (Dittrich-Schröder et al., 2014; Kim, Mendel, Protasov, Blumberg, & Salle, 2008; Kulkarni, 2010). This practice, coupled with the use of resistant genotypes, would be useful to limit the incidence of L. invasa as Eucalyptus species, hybrids, and clones show marked variation in resistance against L. invasa (Dittrich-Schröder, Wingfield, Hurley, & Slippers, 2012; Durand, Rodrigues, Mateus, Boavida, & Branco, 2011; Nyeko & Nakabonge, 2008; Quang Thu et al., 2009). For example, Eucalyptus nitens × Eucalyptus grandis and E. grandis × Eucalyptus camaldulensis hybrids showed high rates of infestation, whereas pure species Eucalyptus dunnii, E. nitens, E. grandis, Eucalyptus urophylla, and the hybrid Eucalyptus saligna × E. urophylla were considered resistant in a greenhouse experiment (Dittrich-Schröder et al., 2012). In field, significant variation for resistance against the insect pest is observed within some species, for example, E. grandis (Arnulf Kanzler, personal communication, Sappi Shaw Research Center, Hilton, KZN, South Africa).

Terpenes are a large group of plant specialized metabolites implicated in various ecological interactions (Moore, Andrew, Kühlheim, & Foley, 2014). They are a highly diverse group with over 20,000 known compounds (Degenhardt & Gershenzon, 2003) and can be separated through the number of isoprene units they contain into hemiterpenes (C5), mono- (C10), sesqui- (C15), di- (C20), tri- (C30), and tetra-terpenes (C40; Dudareva et al., 2005; Webb, Foley, & Külheim, 2014). Examples of ecological interactions include direct plant defence through toxic effect on herbivores (Keefover-Ring, Thompson, & Linhart, 2009), effects on reproduction of insect herbivores (Edwards, Wanjura, & Brown, 1993; Edwards, Wanjura, Brown, & Dearn, 1990; Morrow & Fox, 1980; Stone & Bacon, 1994), indirect defence against herbivores through the attraction of herbivore parasites (De Moraes, Lewis, Paré, Alborn, & Tumlinson, 1998; Giamakis, Kretsi, Chinou, & Spyropoulos, 2001; Turlings et al., 1995), cues that indicate the presence of other toxic constituents (Lawler, Stapley, Foley, & Eschler, 1999), allelopathic agents (Alves, Filho, Innecco, & Torres, 2004), and mediators of resistance to fungal infection (Eyles, Davies, Yuan, & Mohammed, 2003).

Species of the genus Eucalyptus typically contain large amounts of foliar essential oils, which are dominated by mono- and sesqui-terpenes (Coppen, 2003) and which are stored in schizogenous cavities (Carr & Carr, 1970). There is a lot of within species variation of terpenes in eucalypts, both quantitatively (Kainer, Bush, Foley, & Kühlheim, 2017; Wallis et al., 2011) and qualitatively (Padovan, Keszel, Kühlheim, & Foley, 2014). Among the most common terpenes in eucalypts are the mono-terpenes α-pinene and 1,8-cineole, also known as eucalyptol (Padovan et al., 2014); however, individuals with over 100 different foliar terpenes have been found (Wong, Perlmutter, & Marriott, 2017). This variety is the result of three effects: (a) Eucalypts have the largest gene family of terpene synthases known to date, which are responsible for the final biosynthetic step in terpene production (Külheim et al., 2015); (b) these enzymes often produce multiple products (Külheim et al., 2015; Padovan et al., 2017; Schnee, Kollner, Gershenzon, & Degenhardt, 2002); and (c) terpenes are often further modified by enzymes such as cytochrome P450 (Pateraki, Heskes, & Hamberger, 2015) and glycosyl transferases (Rivas, Parra, Martinez, & Garcia-Granados, 2013) leading to the vast array of terpenes found in this genus. Most constitutive terpenes are produced during ontogenesis of leaves, exported into the extracellular cavities, and are believed to be stable there for the lifetime of the leaf (Carr & Carr, 1970). Previous studies have found no indication of induction of essential oils in eucalypts by either wounding or application of methyl jasmonate (Henery, Wallis, Stone, & Foley, 2008). We have recently discovered that L. invasa oviposition and larvae development leads to changes in the profile of essential oils in clones of both resistant E. grandis (TAG5) and susceptible E. camaldulensis × E. grandis (GC540; Oates, Kühlheim, Myburg, Slippers, & Naidoo, 2015). Compared with susceptible individuals, resistant individuals had approximately three times higher constitutive levels of α-pinene and less than half the amount of 1,8-cineole. Seven days post oviposition, leaves of susceptible plants contained significantly lower amounts of 1,8-cineole and α-terpinolene (Oates et al., 2015). The terpene content was concordant with changes in expression of genes involved in terpene biosynthetic pathways. Such observations suggest that specific terpene profiles or individual terpenes may be associated with resistance against the insect pest L. invasa.

Apart from terpenes, induced responses due to oviposition included other responses such as phytohormones in the two genotypes (Oates et al., 2015). This suggests that other chemicals may also play a role in the defence against the insect pest. Although terpene content is typically determined by gas chromatography–mass spectrometry, near-infrared reflectance (NIR) spectra provide an indication of various chemicals including the terpenes. NIR spectra and modelling were used to predict the 1,8-cineole content in extracted Eucalyptus oil with 0.899 accuracy (Wilson, Watt, & Moffat, 2001) and foliar 1,8-cineole proportion in Melaleuca leucadendra tea tree oil with an accuracy of 0.92 (Schimleck & Rimbawanto, 2003). In the latter example, total foliar terpene content was also estimated based on NIR modelling to an accuracy of 0.65 (Schimleck & Rimbawanto, 2003).

We hypothesized that resistance to L. invasa is attributed to chemical variation, and terpenes in particular, in E. grandis. The aim of this study was to determine NIR and terpene profiles associated with resistance against L. invasa in E. grandis, which could be adopted as a tool to predict resistant genotypes and to identify terpenes for further characterization in this interaction.

2 MATERIALS AND METHODS

2.1 Study sites

An *E. grandis* progeny trial series was established on three coastal sites in KwaZulu Natal, South Africa, forming part of Mondi’s tree breeding
2.2 Scoring of host susceptibility

The *E. grandis* trials were established in August 2012. In October 2013, when the trees were 14 months old, trees were inspected for *L. invasa* infestation. Symptoms were scored visually using the following scale: 0—not infested; 1—infested showing evidence of oviposition but no gall development; 2—infested with galls on leaves, mid-ribs, or petioles; and 3—stunting and lethal gall formation. Each tree was thus categorized as either 0, 1, 2, or 3. This first round of scoring was referred to as *L. invasa* screening 1 (LS1) and included all trees within each trial. Figure S1 shows images of representative scores. In October 2014, the trees sampled for NIR and terpene analyses were scored a second time using the same scoring regime. *L. invasa* screening 2 (LS2) was then calculated as the sum of LS1 and the second score for this subpopulation.

2.3 Tissue sampling for NIR and terpene analyses

We sampled a subpopulation, comprising 61 half-sib families (180 trees from SQF, 159 trees from MTZ, and 152 trees from NYL). Trees were selected within each family, where uninfested leaves from trees scored as 0, and infested leaves from trees scored as 1, 2, and 3 were harvested. From each tree, a total of three to five mature leaves, consistently sampled from the equivalent position from a side-branch on the North side of the tree, were punched with a 1-cm cork borer and leaf disks collected into pre-weighed vials containing 5 ml of (99.7%) ethanol with tetradecane as internal standard (0.25 mg/L). In addition, five to six leaves were collected in paper bags, their weight measured on the collection day, dried in 50 °C for 3 days, and their dry weight recorded. Dried leaves were ground in a Foss Cyclotec 1093 mill (Foss, Höganäs, Sweden) and passed through a 1-mm sieve for NIR measurement.

2.4 Calculation of breeding values

Estimates of genetic parameters for *L. invasa* screenings were calculated using PROC MIX in SAS® (SAS Institute, Cary, USA). The statistical model for the analyses was as follows:

\[
y_{ijkl} = \mu + S_i + B(S)_{j(i)} + F_k + FS_{ik} + E_{ijkl},
\]

where

- \(y_{ijkl} \) is the lth observation of the jth block within the ith site for the kth family;
- \(\mu \) is the overall mean;
- \(S_i \) is the fixed effect of the ith site;
- \(B(S)_{j(i)} \) is the fixed effect of the jth block within the ith site;
- \(F_k \) is the random effect across sites of the kth family = \(\sigma^2_f \);
- \(FS_{ik} \) is the random kth family by ith site interaction effect = \(\sigma^2_{fs} \); and
- \(E_{ijkl} \) is the error term = \(\sigma^2_e \).

Family breeding values were obtained from the family best linear unbiased prediction estimates. Within family gain was calculated as within family heritability multiplied by within family deviation. The individual breeding values (IBV), or tree gain, were calculated as family breeding values + within family gain.

Phenotypic variance was estimated as follows:

\[
\sigma^2_p = \sigma^2_f + \sigma^2_{fs} + \sigma^2_e.
\]

Narrow-sense heritability was estimated as follows:

\[
h^2 = 3 \frac{\sigma^2_f}{\sigma^2_p}.
\]

The coefficient of relationship was assumed to be 0.33 instead of 0.25 for half-sib analysis because there is the possibility that some of open-pollinated families were not truly half-sibs but contained some full-sibs (Squillace, 1974). Thus, a coefficient of 3 instead of 4 was multiplied by the family variance in the calculation of heritability.

For each pair of trial sites, the estimates of Type B genetic correlations (\(r_{BG} \)) were calculated as follows:

\[
r_{BG} = \frac{\sigma^2_f}{(\sigma^2_f + \sigma^2_s)}.\]

Type B correlations measure the genetic correlation between the same traits expressed on two or more sites (Burdon, 1977). The parameter may range between 0 and 1 with an estimate approaching 1 giving an indication of very high correlation between family behaviour on the two sites and thus no genotype by environment interaction (G × E). Conversely, a figure approaching zero suggests a high level of G × E.

2.5 Terpene measurements

Ethanol extracts of leaf tissue were separated by gas chromatography and detected by mass spectroscopy as described by Oates et al. (2015). An Agilent 6890 GC/MS using an Alltech AT-35 (35% phenyl and 65% dimethylpolyoxyxylene) column (Alltech, Wilmington, DE, USA) was used with Helium as the carrier gas. The column was 60 m long with an internal diameter of 0.25 mm and with a stationary phase film thickness of 0.25 μm. The temperature regime consisted of 100 °C for 5 min, ramping to 200 °C at 20 °C/min, a ramp to 250 °C at 5 °C/min, with a hold of 250 °C for 4 min. The total elution time was 25 min. The separate components were detected using an FID and an Agilent 5973 Mass Spectrometer dual setup through an SGE MS/FID splitter. The National Institute of Standards and Technology library (Agilent Technologies, Deerfield, IL, USA) reference spectra enabled the identification of peaks with verification of major peaks through comparison with authentic standards. The area under each peak was determined with MSD ChemStation Data Analysis (Agilent Technologies). A relative concentration for each terpene was calculated relative to the internal standard, tetradecane. The fresh to dry weight ratio and terpene concentrations were calculated relative to dry weight for each sample.

2.6 NIR spectroscopy

Five to six dried *E. grandis* leaves, collected in field as described above for terpene analysis, were ground to a fine powder and scanned on a
desktop NIR Foss spectrophotometer (Foss Rapid Content Analyzer XM-1100), which measures absorbance of each sample between 1,100 and 2,498 nm with 2-nm increments. The NIR measures were repeated for each sample and averaged.

2.7 | Statistical analyses

2.7.1 | Modelling NIR spectra to Leptocybe scores

We developed a programmable analysis pipeline in R (R Core Team, 2016) to process NIR spectral data and to fit chemometric models. The process of building NIR models involves the use of mathematical pretreatments (transformations) applied to the NIR spectra. The objective of applying those transformations is to remove the scattering of diffuse reflections associated with sample particle size from the spectra to improve the subsequent regression. The most widely used transformation techniques can be divided into two categories: (a) scatter correction methods and (b) spectral derivatives (Rinnan, van den Berg, & Engelsen, 2009). In this study, we corrected the spectra using multiplicative scatter correction, standard normal variate and detrend from the scatter correction methods; and a second derivative of Savitzky–Golay smoothing with two different window sizes of 5 and 7 points from the spectral derivatives methods. Additionally, we combined transformations by pairs applying scattering correction methods prior to differentiation. Preprocessing of our NIR spectral data was done using the R packages “ChemometricsWithR” (Wehrens, 2011) and “Prospectr” (Stevens & Ramirez-Lopez, 2013), we generated as outcome a total of 12 data sets of predictor variables including the raw spectra (Table S2A).

Local outliers factors were calculated for all observations on each spectral database and used to identify outliers based on density and distance (Breunig, Kriegel, Ng, & Sander, 2000). Individuals with local outliers factors values greater than 2 were excluded from the analysis, using a local outliers factors algorithm implemented in the R package “DMwR” (Torgo, 2015). The percentage of individuals classified as outliers for each set of models is given in Table S2B. Transformed and outlier free databases were used to develop the NIR prediction models for LS1, LS2, and IBV. For this purpose, we used partial least squares implemented in the R package “pls” (Mevik & Wehrens, 2007). Two modelling scenarios were contemplated: first, we grouped the observations by site and fitted models for each site, and second, we used individual NIR spectra to fit models across all sites. For all scenarios, we evaluated the performance of our models using leave-one-out cross-validation. Desirable partial least squares NIR models are the ones that (a) maximize the coefficient of determination (R^2), (b) maximize the percentage of the variance explained for X and Y on the training population (ExpVar_Y and ExpVar_X), (c) minimize the standard errors of cross-validation: root mean squared error of prediction (RMSEP), and (d) have a small number of latent variables (projection factors).

2.7.2 | Modelling terpenes to Leptocybe scores

Bayesian model selection (Raftery, 1995) was performed in R, using the “bicreg” function in the Bayesian model averaging (BMA) package (Raftery, Hoeting, Volinsky, Painter, & Yeung, 2017), to identify which of the 48 measured terpenes (predictor variables) were the most important for predicting L. invasa infestation (Table S3A). We also considered the sums of certain groups of terpenes as possible predictor variables (Table S3B). Terpenes were combined as a result of biological motivation or high pairwise correlations ($r > .6$). Biological motivation was based on either (a) shared intermediate carboxylation (biosynthetically related through same intermediate precursor) or (b) the fact that terpene X is a precursor of terpene Y (biosynthetically related by “descent”); see Keszei, Brubaker, and Foley (2008) Figure 3a.

Instead of using stepwise variable selection to choose candidate covariates, BMA accounts for uncertainty in variable selection by averaging over the best models. The Bayesian information criterion was used as a criterion for model selection and to estimate the posterior probability of a given model. Terpene variable selection was performed for the three dependent variables, LS1, LS2, and IBV, respectively, using the same two modelling scenarios mentioned above (first, models were fit per site and, second, across all sites).

To test whether the BMA model parameters were consistent, we performed leave-one-out cross-validation: the BMA analysis was repeated n times, with n the number of individuals in the sample. For each of these different training data sets (in accordance with the leave-one-out cross-validation strategy; the data of a different individual were excluded per iteration), the model with the lowest Bayesian information criterion was used to estimate model coefficients, whereafter the L. invasa screening value of the excluded individual was predicted using the estimated model coefficients. Finally, a leave-one-out cross-validation R^2 value was calculated by correlating the predicted with the observed L. invasa screening values.

2.7.3 | Modelling NIR spectra to terpene scores

We build terpene composition models for samples as a function of their NIR spectrum, following the same steps described above (transformation to the spectral data, outlier identification, and partial least squares modelling). Terpene models were performed only at site SQF (site at which we found the best models, see Table 1 and Table S5) and for the subset of terpenes that we found were the most important for predicting L. invasa infestation. We also considered the same combinations of terpenes mentioned in the previous section (Table S3B) for fitting partial least squares models.

3 | RESULTS

3.1 | Leptocybe invasa infestation

The distribution of LS1 across the three sites is indicated in Figure 1a. The subpopulation was sampled for terpene and NIR measurements, and the distribution of LS1, LS2, and IBV within this subpopulation is shown in parts b, c, and d of Figure 1. The heritability values for the E. grandis full population (126 families for LS1) and subpopulation (61 families for LS2) at each site are indicated in Table S4. The type B genetic correlations for LS1, for each pairwise combination of the sites, were .71 (MTZ:NYL), .84 (MTZ:SQF), and .74 (SQF:NYL). The type B genetic correlation for the three sites combined was .77, suggesting that there was a relatively low level of G × E with little change in family ranking between the sites. G × E for the subpopulation could...
not be determined due to the smaller number of individuals per family (491 individuals across three sites and 61 families).

3.2 | NIR to predict *Leptocybe invasa* infestation

NIR spectra were used to predict the level of infestation by *L. invasa*. The changes to the spectra after applying mathematical transformations are depicted in Figure S2. Model differences were observed across sites. The best partial least squares regression models were obtained for the SQF site (Table 1), with R^2 ranging between .462 and .622. Table 1 also gives the best models across all sites, with R^2 values ranging between .166 and .248. Selected models for MTZ and NYL sites had low R^2 values ranging between .026 and .115 (Table S5), and a low percentage of the variation in the Y variables was explained (9.30–16.15%).

To select the best model for each variable for each site, we compared the model statistics under each transformed and outlier-free database and selected the one that (a) maximized the coefficient of determination.
determination ($R^2_{\text{validation}}$), the prediction ability (r), and the percentage of the variance explained for X and Y on the training population (ExpVar_Y and ExpVar_X), (b) minimize the standard errors cross-validation: RMSEP, and (c) have a small number of projection factors. Table 2 shows all model statistics that were obtained for each data set when modelling LS2 for the SQF site. For this case, a standard normal variate transformed data set gives the best model. Model diagnostic plots were also created for each data set and were used to select the number of latent variables (factors) of each model. Note that for LS2 under the standard normal variate data set (model diagnostic plots in Figure 2), 8 factors give the highest R^2 and the lowest RMSEP. NIR models under the second scenario (across all sites) did not perform well.

3.3 Terpenes to predict Leptocybe invasa infestation

A descriptive analysis on the terpene measurements (48 terpenes) was performed to explore the data. Figures S3A,B and S4, respectively, show the hierarchical clustering dendrogram of the terpene measurements across all sites, a graphical display of the all-versus-all terpene correlation matrix, and a principal component analysis biplot representing the relationship between the terpenes and the individual trees grouped per site. From these analyses, it is evident that there are groups of terpenes that are highly correlated, so we needed to find a subset of terpenes to fit our models that minimize the likelihood of having multicollinearity problems. Figure S5A–C shows boxplots of terpene concentration, separated by site.

The best BMA models were obtained for the SQF site (see Table S6A–D for all BMA results). A summary of the most important terpenes for predicting LS1, LS2, and IBV at the SQF site and across all sites, together with the relevant model statistics, is presented in Table 3. Seven terpenes from models at the SQF site were selected for further analysis, that is, NIR modelling to predict terpene content. Figure 3 shows the hierarchical clustering dendrogram of the terpene measurements at the SQF site, with the seven selected terpenes highlighted and scattered across different clusters: T.2 (monoterpene 2), T.3 (α-pinene), T.8 (γ-terpinene), T.10 (iso-pinocarveol), T.32 (sesquiterpene 1), T.35 (sesquiterpene 2), and T.46 (sesquiterpene 3). These terpenes were the result of the top BMA model for both LS1 ($R^2 = .306$) and LS2 ($R^2 = .346$), and six of these terpenes were included in the model with the highest R^2 value ($R^2 = .302$) for IBV (Table 3).

Performing leave-one-out cross-validation on the BMA models at the SQF site (and considering only the top Bayesian information criterion-ranked model per BMA run), four of the seven selected terpenes were present in more than 90% of the models (monoterpene 2, α-pinene, γ-terpinene, and sesquiterpene 3), and the remaining three terpenes were added if the presence in more than 50% of the models were considered (iso-pinocarveol, sesquiterpene 1, and sesquiterpene 2). An additional three terpenes were added if the presence in more than 35% of the models were considered (monoterpene 5, terpene 34, and terpene 37). The average number of factors (terpenes included

Table 2 Partial least squares models, based on near-infrared reflectance (NIR) data, for Leptocybe invasa screening 2 at the Siya Qubeka site

<table>
<thead>
<tr>
<th>Data seta</th>
<th>Factors</th>
<th>RMSEpb</th>
<th>ExpVar_Yc</th>
<th>ExpVar_Xd</th>
<th>$R^2_{\text{validation}}$</th>
<th>re</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNV</td>
<td>8</td>
<td>1.017</td>
<td>68.83</td>
<td>99.06</td>
<td>.622</td>
<td>.789</td>
</tr>
<tr>
<td>MSC</td>
<td>8</td>
<td>1.022</td>
<td>68.44</td>
<td>99.09</td>
<td>.619</td>
<td>.787</td>
</tr>
<tr>
<td>DT</td>
<td>5</td>
<td>1.075</td>
<td>62.68</td>
<td>93.66</td>
<td>.577</td>
<td>.76</td>
</tr>
<tr>
<td>SG5</td>
<td>5</td>
<td>1.079</td>
<td>67.33</td>
<td>84.29</td>
<td>.574</td>
<td>.757</td>
</tr>
<tr>
<td>SG7</td>
<td>5</td>
<td>1.073</td>
<td>65.94</td>
<td>86.37</td>
<td>.578</td>
<td>.76</td>
</tr>
<tr>
<td>SNV_SG5</td>
<td>5</td>
<td>1.084</td>
<td>68.02</td>
<td>84.51</td>
<td>.569</td>
<td>.755</td>
</tr>
<tr>
<td>SNV_SG7</td>
<td>5</td>
<td>1.077</td>
<td>66.55</td>
<td>86.66</td>
<td>.575</td>
<td>.758</td>
</tr>
<tr>
<td>MSC_SG5</td>
<td>5</td>
<td>1.085</td>
<td>68.01</td>
<td>84.52</td>
<td>.569</td>
<td>.754</td>
</tr>
<tr>
<td>MSC_SG7</td>
<td>5</td>
<td>1.078</td>
<td>66.54</td>
<td>86.66</td>
<td>.574</td>
<td>.758</td>
</tr>
<tr>
<td>DT_SG5</td>
<td>5</td>
<td>1.084</td>
<td>68.02</td>
<td>84.51</td>
<td>.569</td>
<td>.755</td>
</tr>
<tr>
<td>DT_SG7</td>
<td>5</td>
<td>1.077</td>
<td>66.55</td>
<td>86.66</td>
<td>.575</td>
<td>.758</td>
</tr>
<tr>
<td>NIR</td>
<td>5</td>
<td>1.120</td>
<td>60.33</td>
<td>98.48</td>
<td>.540</td>
<td>.735</td>
</tr>
</tbody>
</table>

aPredictor variable data set name after corresponding preprocessing technique was applied to the NIR spectra (acronyms are explained in Table S2A). b Root mean squared error of the prediction. c Percentage of the Y variable that is accounted in the model. d Percentage of the NIR spectral data that is accounted in the model. e Prediction ability: correlation between observed and NIR predicted values.

FIGURE 2 Model diagnostics of Leptocybe invasa screening 2 (LS2) with a standard normal variate transformed database at the Siya Qubeka site. RMSEP = root mean squared error of the prediction.
TABLE 3 Bayesian model selection to identify the most important terpenes for predicting Leptocybe invasa infestation based on L. invasa screenings (LS1, LS2) and individual breeding values (IBV) at the Siya Qubeka (SQF) site and across all three sites. The model with the highest R^2 value out of the top five Bayesian information criterion-ranked models is reported.

<table>
<thead>
<tr>
<th>Terpene</th>
<th>SQF</th>
<th>All sites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LS1</td>
<td>LS2</td>
</tr>
<tr>
<td>T.2 (monoterpene 2)a</td>
<td>T.2</td>
<td>T.2</td>
</tr>
<tr>
<td>T.10 (iso-pinocarveol)a</td>
<td>T.10</td>
<td>T.10</td>
</tr>
<tr>
<td>T.12 (monoterpene 5)</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>T.22 (terpene 22)</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>T.23 (terpene 23)</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>T.32 (sesquiterpene 1)a</td>
<td>T.32</td>
<td>T.32</td>
</tr>
<tr>
<td>T.35 (sesquiterpene 2)a</td>
<td>T.35</td>
<td>T.35</td>
</tr>
<tr>
<td>T.45 (terpene 45)</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>T.46 (sesquiterpene 3)a</td>
<td>T.46</td>
<td>T.46</td>
</tr>
<tr>
<td>Modelb</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>nVarc</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>R^2</td>
<td>.31</td>
<td>.35</td>
</tr>
<tr>
<td>LOO CVd R^2</td>
<td>.25</td>
<td>.29</td>
</tr>
<tr>
<td>BICe</td>
<td>−29</td>
<td>−40</td>
</tr>
<tr>
<td>Post probf</td>
<td>.02</td>
<td>.05</td>
</tr>
</tbody>
</table>

Cases where the indicated terpenes were not considered important for predicting L. invasa infestation.

aTerpenes selected for near-infrared reflectance modelling. bThe model number out of the top five Bayesian information criterion-ranked models. cThe number of variables selected for that model. dLeave-one-out (LOO) cross-validation (CV) R^2 value. eThe Bayesian information criterion (BIC) is a criterion for model selection among a finite set of models. The model with the lowest BIC is preferred. fThe posterior probabilities of the models selected.

To further improve the BMA models for LS2 in the SQF site, different combinations of predictor variables were included together with individual terpenes as input to separate BMA analyses. Note that when the sum of a group of monoterprenes was included, the separate monoterprenes (that made up the sum) were not included as predictor variables for that analysis. However, it was not possible to obtain a higher R^2 value than when the seven individual terpenes mentioned above were included in the model (calibration $R^2 = .35$ and validation $R^2 = .29$). In a model) across the cross-validation models was 7 (min = 4 and max = 7), and the average R^2 was .34 (min = .27 and max = .36).

BMA models that were obtained across the top five LS1, LS2, and IBV models from data of the MTZ site (average $R^2 = .129$), the NYL site (average $R^2 = .08$), and across all sites (average $R^2 = .07$) did not perform well and were thus not considered in further analyses.

To further improve the BMA models for LS2 in the SQF site, different combinations of predictor variables were included together with individual terpenes as input to separate BMA analyses. Note that when the sum of a group of monoterprenes was included, the separate monoterprenes (that made up the sum) were not included as predictor variables for that analysis. However, it was not possible to obtain a higher R^2 value than when the seven individual terpenes mentioned above were included in the model (calibration $R^2 = .35$ and validation $R^2 = .29$).

3.4 NIR to predict terpenes (SQF site)

Prediction models for terpene concentration were run for the seven terpenes selected under BMA (see list of terpenes above). For those terpenes, the best models were obtained for T.10 (iso-pinocarveol), T.3 (a-pinene), and T.8 (y-terpinene) with R^2 values ranging between .188 and .333 and with prediction abilities between .433 and .577 (Table 4). Table 5 shows summary statistics of the best models obtained when terpenes were combined based on either biological motivation or high pairwise correlations ($r > .6$). Selection of best models was made according to the following conditions: small number of latent variables (factors) that minimize the RMSEP, maximize the proportion of variation explained for both the dependent and independent variables, and maximize the cross-validation R^2. Prediction abilities of those models ranged between .481 for sum(T3-T5,T7,T10,T13-T15) and .683 for sum(T05,T07), the latter being the terpene combination for which we obtained the best model with a 47% of the trait variation.

4 DISCUSSION

We sought to associate terpene profiles with Leptocybe damage in a subpopulation of an E. grandis breeding trial. There was phenotypic variation of Leptocybe damage in the first year of L. invasa infestation (Figure 1a) with the NYL site showing more Score 2 phenotypes (with galls) and the SQF site showing more Score 0 phenotypes (absence of galls). Within the subpopulation, the LS1 scores in NYL showed a higher frequency of 3 and a lower frequency of 0 than the other two sites (Figure 1b). In the second round of phenotyping after reinfection by L. invasa, all individuals showed the presence of galls (Score 1, Figure 1c) with SQF appearing to contain more of the healthy phenotype (higher frequency of Scores 1 and 2) compared with the other sites.

We detected 48 terpenes in the E. grandis individuals; however, only a subset could be identified and were previously identified in Eucalyptus species (Kainer et al., 2017; Padovan, Keszei, Wallis, & Foley, 2012; Wallis et al., 2011). Eucalypts often contain distinct foliar chemical variation within a species, termed “chemotypes,” where the foliar chemical profile of one subpopulation is dominated by one or
FIGURE 3 Hierarchical clustering dendrogram of the 48 measured terpenes at the Siya Qubeka site. The seven terpenes selected for near-infrared reflectance modelling are boxed.
few chemicals, whereas another subpopulation is dominated by different chemicals (Keszéi et al., 2008; Padovan et al., 2014). Ecologically, this type of variation is important as some pest or herbivores preferentially eat only one chemotype (Moore et al., 2014; Padovan, Keszéi, Köllner, Degenhardt, & Foley, 2010). Although there has been no previous record of chemotypic variation in *E. grandis*, two closely related species, *Eucalyptus pelita* and *E. uraphylla*, have two described monoterpene chemotypes each, which are dominated by 1,8-cineole and α-pinene and 1,8-cineole and p-cymene, respectively (Padovan et al., 2014). We tested whether this progeny trial contained distinct chemotypes but could not identify any. The terpene profile of every individual was dominated by α-pinene. Previous attempts to identify chemotypic variation in *E. grandis* did not test many individuals (Brophy & Southwell, 2002), which prompted us to test for such variation in a larger population; however, due to some degree of introgression due to the ongoing inbreeding programme of *E. grandis* in South Africa, the potential full chemical variation of this species has still not been elucidated.

Using the phenotypes captured for the 491 *E. grandis* individuals over two infestation seasons, we successfully developed models to predict *L. invasa* infestation scores based on NIR spectra (Tables 1 and 2) and terpene content (Table 3). We also related NIR to terpenes (Tables 4 and 5). We related NIR to terpene combinations for the Siya Qubeka site. In general, models with RMSEP values smaller than .3 indicate very good predictive models (Veerasamy et al., 2011).

There was a marked discrepancy in site for models that explained the NIR and terpene association with *L. invasa* scores. In both cases, that is, using NIR and terpene data, the only site that passed our criteria of acceptable models was SQF. This is in agreement with our calculations of heritability for LS2 per site. For MTZ and NYL, we found negligible heritability values, so the variation of the *L. invasa* score is mainly due to environmental conditions or random experimental variation. In contrast, SQF had a heritability value of 0.16, being the only test in which genetic variation was found between individuals (Table S4) contributing to better models. G × E could not be determined for the 491 individuals, but a low G × E was estimated for the full *E. grandis* population. Table S1 indicates that there were some slight differences in the environmental data for the three sites. SQF and MTZ had higher moisture content than NYL. The MTZ site contains a hardy grass, which is thought to compete with *E. grandis* growth during establishment. The percentage stocking at breast height was highest at site SQF (Table S1). Collectively, this suggests that SQF has the best growth conditions out of the sites sampled. Interestingly, SQF had a higher proportion of Scores 0 and 1 for LS1 and Scores 1 and 2 for LS2 than the other two sites—indicating a more resistant phenotype (Figure 1a,c).

When modelling terpene effects on *L. invasa* score, we found that the terpenes that most contributed to the models act in opposing directions (see Table S3C and coefficients in Table S6A). One group, including α-pinene, γ-terpinene, and sesquiterpene 1, showed increasing damage to trees with increasing concentration of terpenes. α-Pinene has a relatively high vapour pressure (3 mm Hg at 20 °C) compared with

TABLE 4 The best partial least squares models, based on near-infrared reflectance (NIR) data, to predict terpene content at the Siya Qubeka site

<table>
<thead>
<tr>
<th>Variable</th>
<th>Data set</th>
<th>Factors</th>
<th>RMSEP</th>
<th>ExpVar_Y</th>
<th>ExpVar_X</th>
<th>R²_validation</th>
<th>r²</th>
</tr>
</thead>
<tbody>
<tr>
<td>T.2 (monoterpene 2)</td>
<td>SG7</td>
<td>7</td>
<td>0.0906</td>
<td>35.17</td>
<td>91.02</td>
<td>.077</td>
<td>.277</td>
</tr>
<tr>
<td>T.3 (α-pinene)</td>
<td>MSC_SG7</td>
<td>7</td>
<td>2.075</td>
<td>46.69</td>
<td>90.20</td>
<td>.235</td>
<td>.485</td>
</tr>
<tr>
<td>T.8 (γ-terpinene)</td>
<td>SG7</td>
<td>14</td>
<td>0.590</td>
<td>74.00</td>
<td>97.31</td>
<td>.188</td>
<td>.433</td>
</tr>
<tr>
<td>T.10 (iso-pinocarveol)</td>
<td>SG7</td>
<td>8</td>
<td>0.151</td>
<td>57.52</td>
<td>91.44</td>
<td>.333</td>
<td>.577</td>
</tr>
<tr>
<td>T.32 (sesquiterpene 1)</td>
<td>DT</td>
<td>3</td>
<td>0.126</td>
<td>7.758</td>
<td>80.81</td>
<td>.013</td>
<td>.116</td>
</tr>
<tr>
<td>T.35 (sesquiterpene 2)</td>
<td>MSC</td>
<td>5</td>
<td>0.135</td>
<td>8.90</td>
<td>94.40</td>
<td>.003</td>
<td>.051</td>
</tr>
<tr>
<td>T.46 (sesquiterpene 3)</td>
<td>MSC</td>
<td>4</td>
<td>0.083</td>
<td>14.32</td>
<td>87.07</td>
<td>.080</td>
<td>.282</td>
</tr>
</tbody>
</table>

TABLE 5 The best partial least squares models, based on near-infrared reflectance (NIR) data, to predict monoterpene combinations for the Siya Qubeka site

<table>
<thead>
<tr>
<th>Variable</th>
<th>Data set</th>
<th>Factors</th>
<th>RMSEP</th>
<th>ExpVar_Y</th>
<th>ExpVar_X</th>
<th>R²_validation</th>
<th>r²</th>
</tr>
</thead>
<tbody>
<tr>
<td>sum(T10,T14)</td>
<td>SG7</td>
<td>9</td>
<td>0.207</td>
<td>59.55</td>
<td>94.39</td>
<td>.349</td>
<td>.591</td>
</tr>
<tr>
<td>sum(T5,T7)</td>
<td>SG7</td>
<td>13</td>
<td>1.181</td>
<td>82.90</td>
<td>96.96</td>
<td>.466</td>
<td>.683</td>
</tr>
<tr>
<td>sum(T7,T15)</td>
<td>SG7</td>
<td>12</td>
<td>1.154</td>
<td>78.94</td>
<td>96.75</td>
<td>.461</td>
<td>.679</td>
</tr>
<tr>
<td>sum(T6,T8)</td>
<td>DT_SG7</td>
<td>12</td>
<td>1.249</td>
<td>72.41</td>
<td>96.67</td>
<td>.335</td>
<td>.579</td>
</tr>
<tr>
<td>sum(T5,T7,T10,T13,T15)</td>
<td>SG7</td>
<td>12</td>
<td>1.249</td>
<td>78.57</td>
<td>96.75</td>
<td>.454</td>
<td>.674</td>
</tr>
</tbody>
</table>

4Predictor variable data set name after corresponding preprocessing technique was applied to the NIR spectra (acronyms are explained in Table S2A). 5 Root mean squared error of the prediction. 6 Percentage of the Y variable that is accounted in the model. 7 Percentage of the NIR spectral data that is accounted in the model. 8 Prediction ability: correlation between observed and NIR predicted values. 9 Reason for combining terpenes: high pair-wise correlation (r > .6). 10 Reason for combining terpenes: biological motivation; based on (a) shared intermediate carbocation (biosynthetically related through same intermediate precursor) or (b) terpene X is precursor of terpene Y (biosynthetically related by "descent"). This is based on Keszéi et al. (2008) Figure 3a.
other monoterpene and is therefore more volatile than most monoterpene found in eucalypts. Ladybeetles are attracted to α-pinenone from persimmon (Diospyros kaki; Zhang, Xie, Xue, Peng, & Wang, 2009), whereas trap catch of the invasive pine bark beetle Hylurgus ligniperda was increased to over 200-fold when α-pinenone was used as an attractant (Kerr, Kelly, Bader, & Brockerhoff, 2017); therefore, we could expect α-pinenone to act as a volatile cue for L. invasa oviposition. γ-Terpinene levels were constitutively higher in the susceptible clone GC540 compared with the resistant E. grandis clone TAG5 and were induced to much higher levels upon insect oviposition (Oates et al., 2015). Interestingly, the levels of γ-terpinene decreased in the resistant genotype after infestation (Oates et al., 2015). It is feasible that γ-terpinene may play a role in promoting susceptibility to the insect pest; however, this remains to be demonstrated.

The other group of terpenes (including monoterpene 2, isopinocarveol, sesquiterpene 2, and sesquiterpene 3) acting in the opposite direction may play a direct role in defence against L. invasa, where higher concentrations of the compound lead to reduced damage by L. invasa. Evidence from other systems indicates that this could be achieved through different ways, such as direct toxic effect on larvae leading to either death or reduced growth of larvae (McLean et al., 1993), or through indirect defences by attracting parasites through triphasic ways (reviewed in Gershenzon & Dudareva, 2007). Several parasitoids of L. invasa have been identified with some being adopted for biological control (e.g., Selétrichoides neseri, Ophelimus maskelli, and Selétrichoides kyleri; reviewed in Zheng et al., 2014); however, the volatile cues that attract these parasitic wasps have not been investigated. In a study by Visser, Wegrzyn, Steenkm, Myburg, and Naidoo (2015), artificial inoculation of the E. grandis clone TAG5 with the fungal pathogen Chrysopertha astrofricana led to the induction of iso-pinocarveol systemically, in leaf tissue. This E. grandis clone was also found to be resistant to L. invasa (Oates et al., 2015).

In summary, we produced models for terpene to L. invasa infestation, NIR to terpenes, and NIR to L. invasa interactions in E. grandis that explained 29% (Table 3, bold text), 47% (Table 5, bold text), and 62% (Table 2, bold text) of the trait variation, respectively. These methods developed in this study can be utilized as a guideline to model other plant–insect interaction systems as NIR may be a more cost-effective approach to modelling resistance. One approach to improve the model would involve setting up a similar experiment in a controlled environment where the best and the worst performing individuals were cloned and exposed to L. invasa so that robust phenotypes may be observed. In this manner, stronger associations could be derived for terpenes and resistance to L. invasa revealing important cues that could act as attractants and repellents against the insect pest.

ACKNOWLEDGMENTS

The authors acknowledge funding from the National Research Foundation (NRF) South Africa Bioinformatics and Functional Genomics Programme (Grant ID 89669) and the Department of Science and Technology Eucalyptus genomics platform grant. We thank Ms Jessie Au and Dr Amanda Padovan for assistance with the leaf sample preparation and NIR.

CONFLICT OF INTEREST

The authors declare no competing interests.

ORCID

Sanushka Naidoo http://orcid.org/0000-0001-5620-5599
Carsten Külheim http://orcid.org/0000-0002-0798-3324

REFERENCES

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.